Rolul CRP și al peptidelor legate de CRF în partea întunecată a dependenței (2014)

Brain Res. Author manuscript; available in PMC Feb 16, 2011.

PMCID: PMC2819562

NIHMSID: NIHMS164224

Abstract

Drug addiction is a chronically relapsing disorder characterized by a compulsion to seek and take drugs, the development of dependence, and the manifestation of a negative emotional state when the drug is removed. Activation of brain stress systems is hypothesized to be a key element of the negative emotional state produced by dependence that drives drug-seeking through negative reinforcement mechanisms, defined as the “dark side” of addiction. The focus of the present review is on the role of corticotropin-releasing factor (CRF) and CRF-related peptides in the dark side of addiction. CRF is a key mediator of the hormonal, autonomic, and behavior responses to stressors. Emphasis is placed on the role of CRF in extrahypothalamic systems in the extended amygdala, including the central nucleus of the amygdala, bed nucleus of the stria terminalis, and a transition area in the shell of the nucleus accumbens, in the dark side of addiction. The urocortin/CRF2 systems have been less explored, but results suggest their role in the neuroadaptation associated with chronic drug use, sometimes in opposition to the effects produced by the CRF1 receptor. Compelling evidence argues that the CRF stress system, including its activation of the hypothalamic-pituitary-adrenal axis, plays a key role in engaging the transition to dependence and maintaining dependence once it is initiated. Understanding the role of the CRF systems in addiction not only provides insight into the neurobiology of the dark side of addiction, but also provides novel targets for identifying vulnerability to addiction and the treatment of addiction.

Conceptual Framework: Addiction, Stress, and the Dark Side

Dependența de droguri este o tulburare recidivantă cronică, caracterizată prini) pentru a căuta și a lua medicamentul, (ii) pierderea controlului în limita aportului și (III) apariția unei stări emoționale negative (de exemplu, disforie, anxietate, iritabilitate) care reflectă un sindrom de retragere motivațională atunci când accesul la medicament este împiedicat (definit aici ca dependență) (Koob și Le Moal, 1997,Koob și Le Moal, 2008). Addiction has been conceptualized as an evolving disorder that comprises three stages—preocupare / anticipare, chef / intoxicare, și retragere / afectare negativă—in which impulsivity often dominates at the early stages and compulsivity dominates at terminal stages. As an individual moves from impulsivity to compulsivity, a shift occurs from positive reinforcement driving the motivated behavior to negative reinforcement driving the motivated behavior (Koob, 2004). Argumentarea negativă poate fi definită ca fiind procesul prin care eliminarea unui stimul aversiv (de exemplu, starea emoțională negativă a retragerii medicamentului) crește probabilitatea unui răspuns (de exemplu, consumul de droguri indus de dependență). Aceste trei etape sunt conceptualizate ca interacționând unul cu celălalt, devenind mai intense și, în cele din urmă, conducând la starea patologică cunoscută sub numele de dependență (Koob și Le Moal, 1997).

The present review focuses on the role of corticotropin-releasing factor (CRF) in what has been described as the “dark side” of the addiction cycle (i.e., the retragere / afectare negativă stage of the addiction cycle and the elements of the preoccupation/anticipation stage). Different drugs produce different patterns of addiction with emphasis on different components of the addiction cycle, but all addictive drugs show some common elements relevant to the dark side of addiction. The common elements include profound malaise, dysphoria, and anxiety during withdrawal, a protracted abstinence syndrome characterized by a low-level anxiety/dysphoric state and a high vulnerability to relapse when subjected to an acute stressor. CRF is hypothesized to play a key role in the anxiety/stress-like effects of acute withdrawal, anxiety/stress-like effects of protracted abstinence, and relapse to drug taking during protracted abstinence induced by stressors.

The role of CRF in the dark side component of the addiction cycle is predicated on opponent process theory, which been expanded into the domains of the neurobiology of drug addiction from a neurocircuitry perspective. An allostatic model of the brain motivational systems has been proposed to explain the persistent changes in motivation that are associated with dependence in addiction (Koob și Le Moal 2001,Koob și Le Moal 2008). In this formulation, addiction is conceptualized as a cycle of increasing dysregulation of brain reward/anti-reward mechanisms that results in a negative emotional state contributing to the compulsive use of drugs. Counteradaptive processes that are part of the normal homeostatic limitation of reward function fail to return within the normal homeostatic range. These counteradaptive processes are hypothesized to be mediated by two mechanisms: within-system neuroadaptations (changes in reward pathways) and between-system neuroadaptations (the recruitment of the brain stress systems) (Koob și Bloom, 1988; Koob și Le Moal, 1997, 2008). The recruitment of the brain stress systems, of which CRF is perhaps the prominent component, provides one key part of the negative reinforcement processes that drive the compulsivity of addiction (Koob, 2008).

Factor de eliberare a corticotropinei

CRF is a 41-amino acid polypeptide that has a major role in coordinating the stress response of the body by mediating hormonal, autonomic, and behavioral responses to stressors. CRF (also termed corticotropin-releasing hormone, although the International Union of Pharmacology designation is CRF) was identified by classic techniques of peptide sequencing (Vale et al., 1981). Subsequently, genes encoding three paralogs of CRF—urocortins 1, 2, and 3 (Ucn 1, Ucn 2, Ucn 3), with Ucn 2 and Ucn3 also referred to as stresscopin-related peptide and stresscopin, respectively—were identified by modern molecular biological approaches. CRF agonists can be found in fish (urotensin), frogs (sauvagine), and mammals (urocortin). Urocortin was named for its sequence similarity to carp urotensin I (63%, “uro”) and mammalian CRF (45%, “cort”). Two G-protein-coupled receptors (CRF1, CRF2) that the CRF/Ucn peptides bind and activate with varying affinities were similarly identified (Bale și Vale, 2004; Fekete and Zorrilla, 2007). Pharmacological and transgenic studies show that brain and pituitary CRF1 receptors mediate many of the functional stress-like effects of the CRF system (Heinrichs and Koob, 2004). Previous reviews by ourselves and others have surveyed the biology of CRF systems (Bale și Vale, 2004; Heinrichs and Koob, 2004).

CRF has a wide distribution throughout the brain but particularly high concentrations of cell bodies in the paraventricular nucleus of the hypothalamus, the basal forebrain (notably the extended amygdala), and the brainstem (Swanson și colab., 1983). Central administration of CRF mimics the behavioral response to activation and stress in rodents, and administration of competitive CRF receptor antagonists generally has anti-stress effects (Heinrichs și colab., 1994; Menzaghi et al., 1994; Spina et al., 2000; pentru comentarii, vezi Dunn and Berridge, 1990; Koob și colab., 1994, 2001; Sarnyai și colab., 2001) (Tabelul 1). Of the two major CRF receptors that have been identified, CRF1 receptor activation is associated with increased stress responsiveness (Koob and Heinrichs, 1999), and CRF2 receptor activation is associated with decreases in feeding and decreased stress responsiveness (Spina et al., 1996; Pelleymounter și colab., 2000; dar vezi Ho și colab., 2001; Takahashi și colab., 2001; Fekete and Zorrilla, 2007). Numerous blood-brain barrier-penetrating, selective CRF1 receptor antagonists have been developed, but no small-molecule brain-penetrating CRF2 antagonists have been developed (Zorrilla și Koob, 2007). As a result, an extensive amount of work has been done to elucidate the role of CRF1 receptors in addiction with limited work on the CRF2 receptor (see below).

Tabelul 1

Behavioral effects of centrally administered CRF peptides

Hormonal Stress Systems: Hypothalamic-Pituitary-Adrenal Axis

A key element of the body’s response to stress relevant to addiction is the hypothalamic-pituitary adrenal (HPA) axis, a system largely controlled by CRF in the paraventricular nucleus of the hypothalamus (Figura 1). The HPA axis is composed of three major structures: the paraventricular nucleus of the hypothalamus, the anterior lobe of the pituitary gland, and the adrenal gland (for review, see Smith și Vale, 2006). Neurosecretory neurons in the medial parvocellular subdivision of the paraventricular nucleus synthesize and release CRF into the portal blood vessels which enter the anterior pituitary gland. Binding of CRF to the CRF1 receptor on pituitary corticotropes induces the release of adrenocorticotropic hormone (ACTH) into the systemic circulation. ACTH in turn stimulates glucocorticoid synthesis and secretion from the adrenal cortex. The HPA axis is finely tuned via negative feedback from circulating glucocorticoids that act on glucocorticoid receptors in two main brain areas: the paraventricular nucleus of the hypothalamus and the hippocampus. The hypophysiotropic neurons of the paraventricular nucleus of the hypothalamus are innervated by numerous afferent projections, including from the brainstem, other hypothalamic nuclei, and forebrain limbic structures.

Figura 1

Diagram illustrating the multiple actions of CRF in mediating stress responses in the body. CRF drives the hypothalamic-pituitary adrenal axis by acting to release adrenocorticotropic hormone (ACTH) in the portal system of the pituitary. CRF activates ...

Extrahypothalamic CRF Systems

CRF is also located outside of the HPA axis to control autonomic and behavioral responses to stressors. Substantial CRF-like immunoreactivity is present in the neocortex, extended amygdala, medial septum, hypothalamus, thalamus, cerebellum, and autonomic midbrain and hindbrain nuclei, including the ventral tegmental area (Charlton și colab., 1987; Swanson și colab., 1983). The distribution of Ucn 1 projections overlaps with CRF but also has a different distribution, including visual, somatosensory, auditory, vestibular, motor, tegmental, parabrachial, pontine, median raphe, and cerebellar nuclei (Zorrilla și Koob, 2005). CRF1 receptor has abundant, widespread expression in the brain that overlaps significantly with the distribution of CRF and Ucn 1.

CRF selectiv endogen2 agonists—the type 2 urocortins Ucn 2 (Reyes și colab., 2001) and Ucn 3 (Lewis și colab., 2001)—differ from Ucn 1 and CRF in their neuropharmacological profiles. Ucn 2 and Ucn 3 show high functional selectivity for the CRF2 receptor and have neuroanatomical distributions that are distinct from those of CRF and Ucn 1 (Figura 2). Ucn 2 and Ucn 3 are notably salient in hypothalamic nuclei that express the CRF2 receptorul, incluzând nucleul supraoptic, neuronii magnocelulari ai nucleului paraventricular și antebrațul anterior, inclusiv hipotalamul ventromedial, septul lateral, nucleul patului stria terminalis și amigdala mediană și corticalăLi și colab., 2002). CRF2 (a) receptor isoform is localized neuronally in brain areas distinct from those of the CRF/Ucn 1/CRF1 receptor, cum ar fi nucleul hipotalamic ventromedial, nucleul paraventricular al hipotalamusului, nucleul supraoptic, nucleul tractus solitar, zona postrema, septul lateral și nucleul patului stria terminalis.

Figura 2

Schematic of mammalian corticotropin-releasing factor (CRF) receptors (red polygons), their putative natural ligands (green ovals), and synthetic receptor antagonists (blue squares). Black arrows indicate receptor affinity. Grouped ligands are broadly ...

Construct of the Extended Amygdala: Interface of CRF and the Dark Side of Addiction

Recent neuroanatomical data and new functional observations have provided support for the hypothesis that the neuroanatomical substrates for many of the motivational effects associated with the dark side of addiction may involve a common neural circuitry that forms a separate entity within the basal forebrain, termed the “extended amygdala” (Alheid și Heimer, 1988). The extended amygdala represents a macrostructure composed of several basal forebrain structures: the bed nucleus of the stria terminalis, central medial amygdala, and a transition zone in the posterior part of the medial nucleus accumbens (i.e., posterior shell) (Johnston, 1923; Heimer și Alheid, 1991). Aceste structuri au asemănări în morfologie, imunohistochimie și conectivitate (Alheid și Heimer, 1988) și primesc conexiuni aferente de la cortexul limbic, hipocampul, amigdala bazolaterală, miezul median și hipotalamus lateral. Conexiunile eferente din acest complex includ pallidum ventral posterior (sublenticular), zona tegmentală ventrală, proiecții diferite ale creierului și, probabil, cele mai interesante din punct de vedere funcțional, o proiecție considerabilă a hipotalamusului lateralHeimer și colab., 1991). Key elements of the extended amygdala include not only neurotransmitters associated with the positive reinforcing effects of drugs of abuse, such as dopamine and opioid peptides, but also major components of the extrahypothalamic CRF systems associated with negative reinforcement mechanisms (Koob și Le Moal, 2005; Vezi mai jos).

CRF, the HPA Axis, and Addiction

From the perspective of addiction, progressive changes in the HPA axis are observed during the transition from acute administration to chronic administration of drugs of abuse. Acute administration of most drugs of abuse in animals activates the HPA axis and may first facilitate activity in the brain motivational circuits and drug reward and as a result facilitate acquisition of drug-seeking behavior (Piazza și colab., 1993; Goeders, 1997; Piazza și Le Moal, 1997; Fahlke și colab., 1996). Relevant for the role of CRF in the dark side of addiction, these acute changes are blunted or dysregulated with repeated administration of cocaine, opioids, nicotine, and alcohol (Kreek și Koob, 1998; Rasmussen și colab., 2000; Goeders, 2002; Koob și Kreek, 2007; Sharp și Matta, 1993; Semba și colab., 2004). An atypical responsivity to stressors has been hypothesized to contribute to the persistence and relapse to cycles of opioid dependence, and subsequently this hypothesis was extended to other drugs of abuse (Kreek și Koob, 1998).

Importantly for the role of CRF in the dark side of the addiction process, high circulating levels of glucocorticoids can feedback to shut off the HPA axis but can “sensitize” CRF systems in the central nucleus of the amygdala and basolateral amygdala known to be involved in behavioral responses to stressors (Imaki și colab., 1991; Makino și colab., 1994; Swanson și Simmons, 1989; Schulkin și colab., 1994; Shepard și colab., 2000). Thus, although activation of the HPA axis may characterize initial drug use and the chef / intoxicare stage of addiction, such activation also can lead to subsequent activation of extrahypothalamic brain stress systems that characterize the retragere / afectare negativă stage (Kreek și Koob, 1998; Koob și Le Moal, 2005; Koob și Kreek, 2007).

Role of CRF in Animal Models of Addiction

Chronic administration of drugs with dependence potential dysregulates the stress responses mediated by CRF, including not only the HPA axis, but also the brain extrahypothalamic stress system. Responses common to all drugs of abuse and alcohol include, during acute withdrawal, an activated HPA stress response reflected in elevated ACTH and corticosteroids and an activated brain stress response with increased amygdala CRF release. However, with repeated cycles of addiction, a blunted HPA response occurs but with a sensitized extrahypothalamic CRF stress system response (Koob și Kreek, 2007; Koob, 2008).

In vivo microdialysis during acute withdrawal following chronic administration or self-administration of drugs of abuse produces increases in extracellular CRF in the extended amygdala, a stress-like response (Merlo-Pich și colab., 1995; Richter et al., 2000). During alcohol withdrawal, extrahypothalamic CRF systems become hyperactive, with an increase in extracellular CRF within the central nucleus of the amygdala and bed nucleus of the stria terminalis of dependent rats (Merlo-Pich și colab., 1995; Olive și colab., 2002). Extracellular CRF also increased in the central amygdala during precipitated withdrawal from chronic nicotine (George și colab., 2007), withdrawal from binge cocaine self-administration (Richter și Weiss, 1999), and precipitated withdrawal from opioids (Weiss și colab., 2001) and cannabinoids (Rodriguez de Fonseca și colab., 1997). Amygdala CRF tissue content was reduced during acute withdrawal from ethanol exposure and from binge cocaine self-administration (Zorrilla et al., 2001; Funk și colab., 2006; Koob, 2009).

Another common response to acute withdrawal and protracted abstinence from all major drugs of abuse is the manifestation of a negative emotional state, including anxiety-like responses. Animal models in which the dependent variable is often a passive response to a novel and/or aversive stimulus, such as the open field, elevated plus maze, defensive withdrawal test, or social interaction test, or an active response to an aversive stimulus, such as defensive burying of an electrified metal probe, have shown anxiety-like responses to acute withdrawal from all major drugs of abuse. Withdrawal from repeated administration of cocaine, alcohol, nicotine, cannabinoids, and benzodiazepines produces an anxiogenic-like response in the elevated plus maze, defensive withdrawal, or defensive burying test, and these effects are reversed by administration of CRF antagonists (Sarnyai și colab., 1995; Basso și colab., 1999; Knapp și colab., 2004; Overstreet și colab., 2004; Tucci și colab., 2003; George și colab., 2007; Rodriguez de Fonseca și colab., 1997; Skelton et al., 2007).

Moreover, the decreased brain reward function associated with drug withdrawal is CRF1 receptor-dependent. Elevation of reward thresholds during nicotine withdrawal is blocked by CRF1 antagoniști (Bruijnzeel și colab., 2007, 2009). Using the place aversion model, a CRF1 antagonist also blocked the development of conditioned place aversion induced by precipitated opioid withdrawal in opioid-dependent rats (Stinus și colab., 2005). Studies with microinjections of noradrenergic and CRF antagonists have provided evidence for a role of the bed nucleus of the stria terminalis (Delfs și colab., 2000) and central nucleus of the amygdala (Heinrichs și colab., 1995), respectively, in the place aversions produced by precipitated opioid withdrawal.

Significant evidence from our laboratory and those of others have demonstrated a key role for CRF in the motivational effects of ethanol in dependence. During ethanol withdrawal, extrahypothalamic CRF systems become hyperactive, with an increase in extracellular CRF within the central nucleus of the amygdala and bed nucleus of the stria terminalis in dependent rats (Funk și colab., 2006; Merlo-Pich și colab., 1995; Olive și colab., 2002). The dysregulation of brain CRF systems is hypothesized to underlie both the enhanced anxiety-like behaviors and enhanced ethanol self-administration associated with ethanol withdrawal. Supporting this hypothesis, subtype-nonselective CRF receptor antagonists, such as α-helical CRF9-41 și D-Phe CRF12-41 (intracerebroventricularly injected) reduce ethanol withdrawal-induced anxiety-like behavior (Baldwin și colab., 1991; see above).

Exposure to repeated cycles of chronic ethanol vapor produces substantial increases in ethanol intake in rats, both during acute withdrawal and protracted abstinence (2 weeks or more post-acute withdrawal) (O'Dell și colab., 2004; Rimondini și colab., 2002). Administrarea intracerebroventriculară a CRF1/ CRF2 antagonist blocked the dependence-induced increase in ethanol self-administration during acute withdrawal (Valdez și colab., 2004). CRF antagonists had no effect on ethanol self-administration in nondependent animals (Valdez și colab., 2004). When administered directly into the central nucleus of the amygdala, CRF antagonists also attenuated anxiety-like behavior produced by ethanol withdrawal (Rassnick și colab., 1993) and ethanol self-administration in dependent rats (Funk și colab., 2006, 2007). Again, no effect of the CRF antagonists were observed on ethanol self-administration in nondependent animals. CRF1 small-molecule antagonists selectively reduced the increased self-administration of drugs associated with extended access to intravenous self-administration of cocaine (Specio și colab., 2008), nicotină (George și colab., 2007) și heroină (Greenwell și colab., 2009). Aceste date sugerează un rol important pentru CRF, în primul rând în nucleul central al amigdalei, în medierea creșterii autoadministrației asociate cu dependența.

CRF antagonists injected intracerebroventricularly or systemically also blocked the potentiated anxiety-like responses to stressors observed during protracted abstinence (Breese și colab., 2005; Valdez și colab., 2003) și administrarea crescută de etanol asociată cu abstinența prelungită (Sabino et al, 2006; Funk și colab., 2007; Richardson și colab., 2008; Chu și colab., 2007; Gilpin și colab., 2008; Sommer și colab., 2008; Gehlert și colab., 2007). These results suggest that a residual dysregulation of CRF systems continues into the protracted abstinence associated with the preocupare / anticipare stage. Supporting this hypothesis, both ethanol- and cocaine-withdrawn animals showed reduced CRF-like immunoreactivity in the amygdala followed by a progressive increase culminating in elevated levels 6 weeks post-withdrawal (Zorrilla et al., 2001).

Thus, the brain CRF system has an important role in mediating the shift from positive to negative reinforcement associated with the development of motivational aspects of dependence reflected in increased drug intake with extended access (see Koob și Le Moal, 2008, for further elaboration of this conceptual framework). Data from microdialysis, anxiety-like responses, place conditioning (conditioned place aversion), and extended access to intravenous drug self-administration have converged to provide a neuropharmacological framework for the present hypothesis.

Urocortin and Addiction

A limited number of studies have explored the role of urocortin systems independent of CRF receptors in addiction. A number of studies suggest that urocortin systems may play a role in ethanol self-administration (Ryabinin and Weitemier, 2006). Mouse and rat strains that drink ethanol excessively have higher amounts of urocortin-expressing cells in the Edinger-Westphal nucleus compared with strains that do not drink excessively (Bachtell și colab., 2002, 2003; Turek et al., 2005). High alcohol intake induced activity in urocortin cells in the Edinger-Westphal nucleus (Ryabinin et al., 2003). Ucn 1 microinjection into the projection area of the urocortin cells in the Edinger-Westphal nucleus attenuated the increase in limited-access drinking in mice (Ryabinin et al., 2008). Lipopolysaccharide stress also increased the activity of urocortin cells in the Edinger-Westphal nucleus (Kozicz, 2003). Subsequent studies have shown that other stressors and acute administration of psychostimulants activate urocortin cells in the Edinger-Westphal nucleus region, now termed the pIIIu, suggesting that multiple drugs of abuse and stressors can activate the Ucn 1 system in this region (Spangler și colab., 2009). However, the locomotor sensitization observed in mice with repeated administration of ethanol was blocked by CRF1 antagonists and not in Ucn 1 or CRF2 knockout (Pastor et al., 2008). CRF2 knockout mice also failed to show decreases in ethanol consumption in both 24 h two-bottle choice and limited-access paradigms (Sharpe et al., 2005). Altogether, these results suggest that the Ucn 1 system deriving from the pIIIu in the region of the Edinger-Westphal nucleus is activated by excessive ethanol consumption. However, its action may be mediated more by CRF1 receptors than CRF2 receptori.

In the domain of increased ethanol intake associated with ethanol dependence, a highly selective CRF2 agonist, Ucn 3, when injected intracerebroventricularly or directly into the central nucleus of the amygdala, had an effect similar to a CRF1 antagonist in reducing the increase in ethanol self-administration associated with acute withdrawal in dependent rats. However, no effect was observed in nondependent rats (Valdez și colab., 2004; Funk și Koob, 2007). Ucn 3 also selectively attenuated the increase in ethanol intake observed in C57BL/6J mice during limited access to ethanol (Sharpe and Phillips, 2009). These results suggest that the Ucn 3 system may block excessive drinking under a number of conditions and suggest a role for CRF2 receptors that is opposite to the role of CRF and Ucn 1 via CRF1 receptors in modulating ethanol intake in dependent animals.

Withdrawal-induced enhanced long-term potentiation in hippocampal slices associated with chronic high-dose cocaine exposure was blocked by both CRF1 și CRF2 receptori (Guan și colab., 2009). In brain slice recordings from the lateral septum following acute withdrawal from chronic cocaine, a shift in CRF2 receptor activity from inhibition to facilitation was observed (Liu și colab., 2005). Spontaneous somatic withdrawal from chronic opioid administration was blocked in CRF2 knockout (Papaleo et al., 2008), whereas the motivational effects of opioid withdrawal, measured by conditioned place aversion, were blocked in CRF1 knockout (Contarino și Papaleo, 2005). Altogether, these results suggest that during withdrawal from drugs of abuse, the CRF2 system may become engaged in the neuroplasticity that conveys somatic withdrawal, motivational withdrawal, and aspects of changes in learning. The specific sites that are involved (e.g., septum, amygdala, hippocampus), however, remain to be determined.

Stress-Induced Reinstatement

A state of stress and stressor exposure have long been associated with relapse and vulnerability to relapse (Koob și Kreek, 2007; Marlatt and Gordon, 1980). In human alcoholics, numerous symptoms that can be characterized by negative emotional states such as dysphoria, malaise, irritability, and anxiety, persist long after acute physical withdrawal from alcohol (Alling și colab., 1982). These symptoms, post acute withdrawal, often precede relapse (Hershon, 1977; Annis și colab., 1998). Negative emotion, including elements of anger, frustration, sadness, anxiety, and guilt, is a key factor in relapse (Zywiak și colab., 1996) and was the leading precipitant of relapse in a large-scale replication of Marlatt’s taxonomy (Lowman și colab., 1996). Negative affect, stress, or withdrawal-related distress also increases drug craving (Childress și colab., 1994; Cooney și colab., 1997; Sinha și colab., 2000).

The role of CRF in stress-induced reinstatement of drug-seeking follows a pattern of results somewhat parallel to the role of CRF in the anxiety-like effects of acute withdrawal and dependence-induced increases in drug intake (for reviews, see Shaham și colab., 2003; Lu și colab., 2003). CRF mixt1/ CRF2 antagoniști injectați intracerebroventricular și / sau CRF1 small-molecule antagonists blocked stress-induced reinstatement of cocaine, opioid, alcohol, and nicotine seeking behavior (see Liu și Weiss, 2002; Shaham și colab., 2003; Lu și colab., 2003; Le et al. 2000; Shaham și colab. 1998; Gehlert și colab., 2007; Bruijnzeel și colab., 2009; Marinelli și colab., 2007). Aceste efecte au fost repetate cu injecții intracerebrale de CRF mixt1/ CRF2 antagonist sau CRF cu moleculă mică1 antagonist into the bed nucleus of the stria terminalis, median raphe nucleus, and ventral tegmental area, but not the amygdala or nucleus accumbens (see Shaham și colab., 2003; Lu și colab., 2003), suggesting that different sites, such as the bed nucleus of the stria terminalis, median raphe nucleus, and ventral tegmental area, may be important for stress-induced relapse, in contrast to the role of CRF in dependence-induced increases in drug self-administration which to date has been localized primarily to the central nucleus of the amygdala (Funk și colab., 2006). Notice that stress-induced reinstatement occurs independent of stress-induced activation of the HPA axis (Erb și colab., 1998; Le et al., 2000; Shaham și colab., 1997).

For example, CRF systems have also been identified in the ventral tegmental area, and footshock stress can release CRF into the ventral tegmental area and has a role in stress-induced reinstatement (Wang și colab., 2005). Footshock-induced reinstatement of cocaine-seeking was blocked by administration of a CRF2 receptor antagonist, and CRF agonists with strong affinity for the CRF binding protein mimicked the effects induced by footshock, suggesting the involvement of both CRF2 receptors and the CRF binding protein in the ventral tegmental area in stress-induced reinstatement (Wang și colab., 2007). These results complement the role of the CRF1 system in the extended amygdala in stress-induced reinstatement (Shaham și colab., 1998). Other brain stress systems implicated in stress-induced reinstatement possibly linked to brain CRF systems include norepinephrine, orexin, vasopressin, and nociceptin (see Shaham și colab., 2003; Lu și colab., 2003).

Thus, the brain stress systems may impact both the retragere / afectare negativă etapă și preocupare / anticipare stage of the addiction cycle, albeit by engaging different components of the extended amygdala emotional system (central nucleus of the amygdala Raport bed nucleus of the stria terminalis; see above), and the dysregulations that comprise the negative emotional state of drug dependence persist during protracted abstinence to set the tone for vulnerability to “craving” driven by activation of the drug-, cue-, and stress-induced reinstatement neurocircuits.

CRF, the Dark Side, and Addiction: A Conceptual Framework for Linking Stress Systems and Addiction

All drugs of abuse engage the HPA axis during acquisition of drug-taking and again during acute withdrawal from the drug via activation of CRF in the paraventricular nucleus of the hypothalamus. As the cycle of drug taking and withdrawal continues, the HPA axis response becomes blunted, but the repeated exposure of the brain to high levels of glucorticoids can continue to have profound effects on the extrahypothalamic brain stress systems (Figura 3). Strong evidence suggests that glucocorticoids “sensitize” the CRF system in the amygdala (Imaki și colab., 1991; Makino și colab., 1994; Swanson și Simmons, 1989). Thus, the first component of the contribution of CRF to the dark side is activation of the HPA axis and glucocorticoids, which are linked initially to high responsivity to novelty and facilitation of reward. Subsequently, sensitization of CRF systems in the extended amygdala occurs in which they contribute to a stress component of the shift from homeostasis to pathophysiology associated with drug addiction. This stress component may reflect a component of the opponent process response to excessive activation of reward systems, termed anti-reward (Koob și Le Moal, 2008).

Figura 3

Brain circuits hypothesized to be recruited at different stages of the addiction cycle as addiction moves from positive reinforcement to negative reinforcement. The top right circuit refers to the hypothalamic-pituitary-adrenal (HPA) axis which (i) feeds ...

Opponent process, between-system neuroadaptations are hypothesized to involve neurochemical systems other than those involved in the positive rewarding effects of drugs of abuse that are recruited or dysregulated by chronic activation of the reward system (Koob și Bloom, 1988). A between-system neuroadaptation is a circuitry change in which another different circuit (anti-reward circuit) is activated by the reward circuit and has opposing actions, again limiting reward function. Therefore, recruitment of the CRF system during the development of dependence for all drugs of abuse would have key motivational significance. Additional between-system neuroadaptations associated with motivational withdrawal of a between-system opponent process include activation of the dynorphin/κ-opioid system, norepinephrine brain stress system, extrahypothalamic vasopressin system, and possibly the orexin system. Brain anti-stress systems, such as neuropeptide Y and nociceptin, may also be compromised during the development of dependence, thus removing a mechanism for restoring homeostasis (Koob și Le Moal, 2008). Additionally, activation of the brain stress systems may not only contribute to the negative motivational state associated with acute abstinence, but also may contribute to the malaise, persistent dysphoria, and vulnerability to stressors observed during protracted abstinence in humans. These results suggest that the motivation to continue drug use during dependence not only includes a change in the function of neurotransmitters associated with the acute reinforcing effects of drugs of abuse during the development of dependence, such as dopamine, opioid peptides, serotonin, and γ-aminobutyric acid, but also recruitment of the brain stress systems and/or disruption of the brain anti-stress systems (Koob, 2008; Koob și Le Moal, 2008).

Thus, the activity of neural circuits involving CRF normally involved in appropriate responses to acute stressors contributes to the aversive emotional state that drives the negative reinforcement of addiction. The retragere / afectare negativă stage defined above consists of key motivational elements, such as chronic irritability, emotional pain, malaise, dysphoria, alexithymia, and loss of motivation for natural rewards, and is characterized in animals by increases in reward thresholds during withdrawal from all major drugs of abuse (Koob, 2008). A key component of the dark side of addiction is the concept of anti-reward (i.e., processes put in place to limit reward) (Koob și Le Moal, 1997,Koob și Le Moal, 2005,Koob și Le Moal, 2008). As dependence and withdrawal develop, brain anti-reward systems such as CRF are hypothesized to be recruited to produce stress-like, aversive states (Koob și Le Moal, 2001; Nestler, 2005; Aston-Jones și colab., 1999).

An overall conceptual framework throughout this review is that engagement of a key brain stress system mediated by CRF represents more than a simple break with homeostasis in the context of addiction, but rather the development of allostasis. Allostasis is defined as “stability through change” and is different from homeostasis because feed-forward, rather than negative feedback, mechanisms are hypothesized to be engaged (Sterling și Eyer, 1988). Cu toate acestea, tocmai această capacitate de mobilizare rapidă a resurselor și de utilizare a mecanismelor feed-forward conduce la o stare alostatică dacă sistemele nu au suficient timp pentru restabilirea homeostaziei. Un starea alostatică poate fi definită ca o stare de deviere cronică a sistemului de reglementare de la nivelul său normal de funcționare (homeostatic).

Sistemele de stres la nivelul creierului raspund rapid provocarilor anticipate ale homeostaziei, dar sunt greu de obisnuit sau nu se opresc imediat cand s-au angajat (Koob, 1999). Thus, the very physiological mechanism that allows a rapid and sustained response to environmental challenge becomes the engine of pathology if adequate time or resources are not available to shut off the response. Drug addiction, similar to other chronic physiological disorders such as high blood pressure, worsens over time, is subject to significant environmental influences (e.g., external stressors), and leaves a residual neural trace that allows rapid “re-addiction” even months and years after detoxification and abstinence. These characteristics of drug addiction have led to a reconsideration of drug addiction as more than simply homeostatic dysregulation of emotional function, but rather as an allostatic state with CRF activation as a key contributor. This state of compulsive drug seeking represents a combination of chronic elevation of reward set point fueled by numerous neurobiological changes, including decreased function of reward circuits, loss of prefrontal cortex executive control, facilitation of striatal stimulus-response associations, and recruitment of the CRF brain stress system (Koob și Le Moal, 2008). Finally, it is becoming increasingly clear that genetic vulnerability may also play a role in the dark side axis of compulsivity.

An association was found between haplotype tagging single-nucleotide polymorphisms of the CRF1 gene with patterns of alcohol consumption in binge drinking in adolescents and alcohol-dependent adults (Treutlein et al., 2006). In a subsequent study, adolescents homozygous for the C allele of the R1876831 single-nucleotide polymorphism drank more alcohol per occasion and had higher lifetime rates of heavy drinking in relation to negative life events than subjects carrying the T-allele (Blomeyer și colab., 2008). In a follow-up study, homozygotes of the C allele of rs1876831, as well as carriers of the A allele of rs242938, when exposed to stress, exhibited significantly higher drinking activity than carriers of other alleles (Schmid et al., 2009). In the genetically selected Marchigian-Sardinian preferring rat line, high ethanol preference correlated with a genetic polymorphism of the crhr1 promotor și o creștere a CRF1 density in the amygdala, as well as increased sensitivity to stress and increased sensitivity to a CRF1 antagonist (Hansson et al., 2006). In non-genetically selected rats exposed to repeated cycles of ethanol intoxication and dependence, a CRF1 antagonist a blocat aportul crescut de etanol asociat cu abstinența prelungită, un efect care a coincis cu creșterea regulată a CRF1 gena și reglarea în jos a CRF2 gena din amigdala (Sommer și colab., 2008). Altogether these results suggest the exciting possibility that certain single-nucleotide polymorphisms in the human population may predict vulnerability to certain subtypes of excessive drinking syndromes associated with the dark side.

recunoasteri

Preparation of this manuscript was supported by National Institutes of Health grant DK26741 from the National Institute on Diabetes and Digestive and Kidney Diseases and the Pearson Center for Alcoholism and Addiction Research. The author would like to thank Michael Arends for his assistance with preparing and editing this manuscript.

Note de subsol

Declinarea responsabilității editorului: Acesta este un fișier PDF al unui manuscris needitat care a fost acceptat pentru publicare. Ca serviciu pentru clienții noștri oferim această versiune timpurie a manuscrisului. Manuscrisul va fi supus copierii, tipăririi și revizuirii probelor rezultate înainte de a fi publicat în forma sa finală. Rețineți că în timpul procesului de producție pot fi descoperite erori care ar putea afecta conținutul și toate denunțările legale care se referă la jurnal.

Referinte

  1. Alheid GF, Heimer L. Perspective noi în organizarea bazei forebrain, de o relevanță specială pentru tulburările neuropsihiatrice: componentele striatopallide, amigdaloide și corticopetale ale substantia innominata. Neuroscience. 1988; 27: 1-39. [PubMed]
  2. Alling C, Balldin J, Bokstrom K, Gottfries CG, Karlsson I, Langstrom G. Studies on duration of a late recovery period after chronic abuse of ethanol: a cross-sectional study of biochemical and psychiatric indicators. Acta Psychiatr Scand. 1982;66:384–397. [PubMed]
  3. Annis HM, Sklar SM, Moser AE. Gender in relation to relapse crisis situations, coping, and outcome among treated alcoholics. Addict Behav. 1998;23:127–131. [PubMed]
  4. Aston-Jones G, Delfs JM, Druhan J, Zhu Y. The bed nucleus of the stria terminalis: a target site for noradrenergic actions in opiate withdrawal. In: McGinty JF, editor. Advancing from the Ventral Striatum to the Extended Amygdala: Implications for Neuropsychiatry and Drug Abuse. Vol. 877. New York Academy of Sciences; New York: 1999. pp. 486–498. series title: Annals of the New York Academy of Sciences. [PubMed]
  5. Bachtell RK, Tsivkovskaia NO, Ryabinin AE. Strain differences in urocortin expression in the Edinger-Westphal nucleus and its relation to alcohol-induced hypothermia. Neuroscience. 2002;113:421–434. [PubMed]
  6. Bachtell RK, Weitemier AZ, Galvan-Rosas A, Tsivkovskaia NO, Risinger FO, Phillips TJ, Grahame NJ, Ryabinin AE. The Edinger-Westphal-lateral septum urocortin pathway and its relationship to alcohol consumption. J Neurosci. 2003;23:2477–2487. [PubMed]
  7. Baldwin HA, Rassnick S, Rivier J, Koob GF, Britton KT. Antagonistul CRF inversează răspunsul "anxiogen" la retragerea etanolului la șobolan. Psychopharmacology. 1991; 103: 227-232. [PubMed]
  8. Bale TL, Vale WW. Receptorii CRF și CRF: rol în răspunsul la stres și alte comportamente. Annu Rev Pharmacol Toxicol. 2004; 44: 525-557. [PubMed]
  9. Basso AM, Spina M, Rivier J, Vale W, Koob GF. Antagonistul factorului de eliberare a corticotropinei atenuează efectul "anxiogenic" în paradigma de îngropare defensivă, dar nu în labirintul plus plus după cocaină cronică la șobolani. Psychopharmacology. 1999; 145: 21-30. [PubMed]
  10. Blomeyer D, Treutlein J, Esser G, Schmidt MH, Schumann G, Laucht M. Interaction between CRHR1 gene and stressful life events predicts adolescent heavy alcohol use. Biol Psychiatry. 2008;63:146–151. [PubMed]
  11. Breese GR, Overstreet DH, Knapp DJ, Navarro M. Înainte de retragerile multiple de etanol spori stresul indus de comportamentul de anxietate: inhibarea prin CRF1- și antagoniști ai receptorilor benzodiazepinici și un 5-HT1a-agonistul receptorului. Neuropsychopharmacology. 2005; 30: 1662-1669. [Articol gratuit PMC] [PubMed]
  12. Bruijnzeel AW, Prado M, Isaac S. Corticotropin-releasing factor-1 receptor activation mediates nicotine withdrawal-induced deficit in brain reward function and stress-induced relapse. Biol Psychiatry. 2009;66:110–117. [Articol gratuit PMC] [PubMed]
  13. Bruijnzeel AW, Zislis G, Wilson C, Gold MS. Antagonism of CRF receptors prevents the deficit in brain reward function associated with precipitated nicotine withdrawal in rats. Neuropsychopharmacology. 2007;32:955–963. [PubMed]
  14. Charlton BG, Ferrier IN, Perry RH. Distribution of corticotropin-releasing factor-like immunoreactivity in human brain. Neuropeptides. 1987;10:329–334. [PubMed]
  15. Childress AR, Ehrman R, McLellan AT, MacRae J, Natale M, O’Brien CP. Can induced moods trigger drug-related responses in opiate abuse patients? J Subst Abuse Treat. 1994;11:17–23. [PubMed]
  16. Chu K, Koob GF, Cole M, Zorrilla EP, Roberts AJ. Dependence-induced increases in ethanol self-administration in mice are blocked by the CRF1 receptor antagonist antalarmin and by CRF1 receptor knockout. Pharmacol Biochem Behav. 2007;86:813–821. [Articol gratuit PMC] [PubMed]
  17. Contarino A, Papaleo F. Calea receptorului-1 al factorului de eliberare a corticotropinei mediază stările afective negative ale retragerii opiacee. Proc Natl Acad Sci SUA. 2005; 102: 18649-18654. [Articol gratuit PMC] [PubMed]
  18. Cooney NL, Litt MD, Morse PA, Bauer LO, Gaupp L. Reactivitatea semnalului de alcool, reactivitatea dispozitiei negative si recidiva la barbatii alcoolici tratati. J Abnorm Psychol. 1997;106:243–250. [PubMed]
  19. Delfs JM, Zhu Y, Druhan JP, Aston-Jones G. Noradrenalina în creierul ventral este critică pentru aversiunea indusă de retragerea opiaceei. Natură. 2000; 403: 430-434. [PubMed]
  20. Dunn AJ, Berridge CW. Physiological and behavioral responses to corticotropin-releasing factor administration: is CRF a mediator of anxiety or stress responses? Brain Res Rev. 1990;15:71–100. [PubMed]
  21. Erb S, Shaham Y, Stewart J. Rolul factorului de eliberare a corticotropinei și al corticosteronului în recidiva indusă de stres și cocaină la căutarea de cocaină la șobolani. J Neurosci. 1998; 18: 5529-5536. [PubMed]
  22. Fahlke C, Hard E, Hansen S. Facilitation of ethanol consumption by intracerebroventricular infusions of corticosterone. Psychopharmacology. 1996;127:133–139. [PubMed]
  23. Fekete EM, Zorrilla EP. Physiology, pharmacology, and therapeutic relevance of urocortins in mammals: ancient CRF paralogs. Front Neuroendocrinol. 2007;28:1–27. [Articol gratuit PMC] [PubMed]
  24. Funk CK, Koob GF. Un CRF2 agonistul administrat în nucleul central al amigdalei scade autodepunerea etanolului în șobolanii dependenți de etanol. Brain Res. 2007; 1155: 172-178. [Articol gratuit PMC] [PubMed]
  25. Funk CK, O'Dell LE, Crawford EF, Koob GF. Factorul de eliberare a corticotropinei din nucleul central al amigdalei mediază autoadministrarea etanolului îmbunătățită în șobolanii dependenți de etanol, care au fost retrași. J Neurosci. 2006; 26: 11324-11332. [PubMed]
  26. Funk CK, Zorrilla EP, Lee MJ, Rice KC, Koob GF. Factorii de eliberare a corticotropinei Antagoniștii 1 reduc selectiv administrarea etanolului în șobolani dependenți de etanol. Biol Psihiatrie. 2007; 61: 78-86. [Articol gratuit PMC] [PubMed]
  27. Gehlert DR, Cippitelli A, Thorsell A, Le AD, Hipskind PA, Hamdouchi C, Lu J, Hembre EJ, Cramer J, Song M, McKinzie D, Morin M, Ciccocioppo R, Heilig M. 3-(4-Chloro-2-morpholin-4-yl-thiazol-5-yl)-8-(1-ethylpropyl)-2,6-dimethyl-imidazo[1,2-b]pyridazine: a novel brain-penetrant, orally available corticotropin-releasing factor receptor 1 antagonist with efficacy in animal models of alcoholism. J Neurosci. 2007;27:2718–2726. [PubMed]
  28. George O, Ghozland S, Azar MR, Cottone P, Zorrilla EP, Parsons LH, O'Dell LE, Richardson HN, Koob GF. CRF-CRF1 system activation mediates withdrawal-induced increases in nicotine self-administration in nicotine- dependent rats. Proc Natl Acad Sci USA. 2007;104:17198–17203. [Articol gratuit PMC] [PubMed]
  29. Gilpin NW, Richardson HN, Koob GF. Effects of CRF1-receptor and opioid- receptor antagonists on dependence-induced increases in alcohol drinking by alcohol-preferring (P) rats. Alcohol Clin Exp Res. 2008;32:1535–1542. [Articol gratuit PMC] [PubMed]
  30. Goeders NE. Un rol neuroendocrin în întărirea cocainei. Psychoneuroendocrinology. 1997; 22: 237-259. [PubMed]
  31. Goeders NE. Stresul și dependența de cocaină. J. Pharmacol Exp Ther. 2002; 301: 785-789. [PubMed]
  32. Greenwell TN, Funk CK, Cottone P, Richardson HN, Chen SA, Rice K, Zorrilla EP, Koob GF. Corticotropin-releasing factor-1 receptor antagonists decrease heroin self-administration in long-, but not short-access rats. Addict Biol. 2009;14:130–143. [Articol gratuit PMC] [PubMed]
  33. Guan X, Zhang R, Xu Y, Li S. Cocaine withdrawal enhances long-term potentiation in rat hippocampus via changing the activity of corticotropin-releasing factor receptor subtype 2. Neuroscience. 2009;161:665–670. [PubMed]
  34. Heimer L, Alheid G. Piecing together the puzzle of basal forebrain anatomy. In: Napier TC, Kalivas PW, Hanin I, editors. The Basal Forebrain: Anatomy to Function. Vol. 295. Plenum Press; New York: 1991. pp. 1–42. series title: Advances in Experimental Medicine and Biology.
  35. Heimer L, Zahm DS, Churchill L, Kalivas PW, Wohltmann C. Specificitatea în modelele de proiecție ale miezului și coajului acumbal la șobolan. Neuroscience. 1991; 41: 89-125. [PubMed]
  36. Heinrichs SC, Koob GF. Corticotropin-releasing factor in brain: a role in activation, arousal, and affect regulation. J Pharmacol Exp Ther. 2004;311:427–440. [PubMed]
  37. Heinrichs SC, Menzaghi F, Merlo Pich E, Baldwin HA, Rassnick S, Britton KT, Koob GF. Anti-stress action of a corticotropin-releasing factor antagonist on behavioral reactivity to stressors of varying type and intensity. Neuropsychopharmacology. 1994;11:179–186. [PubMed]
  38. Heinrichs SC, Menzaghi F, Schulteis G, Koob GF, Stinus L. Suprimarea factorului de eliberare a corticotropinei în amigdala atenuează consecințele aversive ale retragerii morfinei. Behav Pharmacol. 1995; 6: 74-80. [PubMed]
  39. Hershon HI. Alcohol withdrawal symptoms and drinking behavior. J Stud Alcohol. 1977;38:953–971. [PubMed]
  40. Ho SP, Takahashi LK, Livanov V, Spencer K, Lesher T, Maciag C, Smith MA, Rohrbach KW, Hartig PR, Arneric SP. Attenuation of fear conditioning by antisense inhibition of brain corticotropin releasing factor-2 receptor. Mol Brain Res. 2001;89:29–40. [PubMed]
  41. Imaki T, Nahan JL, Rivier C, Sawchenko PE, Vale W. Reglarea diferențială a ARNm al factorului de eliberare a corticotropinei în regiuni ale creierului de șobolan prin glucocorticoizi și stres. J Neurosci. 1991; 11: 585-599. [PubMed]
  42. Johnston JB. Further contributions to the study of the evolution of the forebrain. J Comp Neurol. 1923;35:337–481.
  43. Knapp DJ, Overstreet DH, Moy SS, Breese GR. SB242084, flumazenil și CRA1000 blochează anxietatea indusă de retragerea etanolului la șobolani. Alcool. 2004; 32: 101-111. [Articol gratuit PMC] [PubMed]
  44. Koob GF. Factorul de eliberare a corticotropinei, norepinefrina și stresul. Biol Psihiatrie. 1999; 46: 1167-1180. [PubMed]
  45. Koob GF. Allostatic view of motivation: implications for psychopathology. In: Bevins RA, Bardo MT, editors. Motivational Factors in the Etiology of Drug Abuse. Vol. 50. University of Nebraska Press; Lincoln NE: 2004. pp. 1–18. series title: Nebraska Symposium on Motivation.
  46. Koob GF. Un rol pentru sistemele de stres creier în dependență. Neuron. 2008; 59: 11-34. [Articol gratuit PMC] [PubMed]
  47. Koob GF. Brain stress systems in the amygdala in addiction. Brain Res. 2009 in press. [Articol gratuit PMC] [PubMed]
  48. Koob GF, Bartfai T, Roberts AJ. The use of molecular genetic approaches in the neuropharmacology of corticotropin-releasing factor. Int J Comp Psychol. 2001;14:90–110.
  49. Koob GF, Bloom FE. Mecanisme celulare și moleculare ale dependenței de droguri. Ştiinţă. 1988; 242: 715-723. [PubMed]
  50. Koob GF, Heinrichs SC. A role for corticotropin-releasing factor and urocortin in behavioral responses to stressors. Brain Res. 1999;848:141–152. [PubMed]
  51. Koob GF, Heinrichs SC, Menzaghi F, Pich EM, Britton KT. Corticotropin releasing factor, stress and behavior. Seminars Neurosci. 1994;6:221–229.
  52. Koob GF, Kreek MJ. Stresul, disreglementarea căilor de recompensă a medicamentelor și tranziția la dependența de droguri. Am J Psihiatrie. 2007; 164: 1149-1159. [Articol gratuit PMC] [PubMed]
  53. Koob GF, Le Moal M. Abuz de droguri: dysregulări homeostatice hedonice. Ştiinţă. 1997; 278: 52-58. [PubMed]
  54. Koob GF, Le Moal M. Dependența de droguri, dysregularea recompensei și alostasis. Neuropsychopharmacology. 2001; 24: 97-129. [PubMed]
  55. Koob GF, Le Moal M. Drug addiction and allostasis. In: Schulkin J, editor. Allostasis, Homeostasis, and the Costs of Physiological Adaptation. Cambridge University Press; New York: 2004. pp. 150–163.
  56. Koob GF, Le Moal M. Plasticity of reward neurocircuitry and the dark side of drug addiction. Nat Neurosci. 2005;8:1442–1444. [PubMed]
  57. Koob GF, Le Moal M. Dependența și sistemul antireward al creierului. Annu Rev Psychol. 2008; 59: 29-53. [PubMed]
  58. Kozicz T. Neurons colocalizing urocortin and cocaine and amphetamine-regulated transcript immunoreactivities are induced by acute lipopolysaccharide stress in the Edinger-Westphal nucleus in the rat. Neuroscience. 2003;116:315–320. [PubMed]
  59. Kreek MJ, Koob GF. Consumul de droguri: Stresul și disreglementarea căilor de recompensă a creierului. Alcoolul de droguri depinde. 1998; 51: 23-47. [PubMed]
  60. Le AD, Harding S, Juzytsch W, Watchus J, Shalev U, Shaham Y. The role of corticotrophin-releasing factor in stress-induced relapse to alcohol-seeking behavior in rats. Psychopharmacology. 2000;150:317–324. [PubMed]
  61. Lewis K, Li C, Perrin MH, Blount A, Kunitake K, Donaldson C, Vaughan J, Reyes TM, Gulyas J, Fischer W, Bilezikjian L, Rivier J, Sawchenko PE, Vale WW. Identification of urocortin III, an additional member of the corticotropin-releasing factor (CRF) family with high affinity for the CRF2 receptor. Proc Natl Acad Sci USA. 2001;98:7570–7575. [Articol gratuit PMC] [PubMed]
  62. Li C, Vaughan J, Sawchenko PE, Vale WW. Urocortin III-immunoreactive projections in rat brain: partial overlap with sites of type 2 corticotrophin-releasing factor receptor expression. J Neurosci. 2002;22:991–1001. [PubMed]
  63. Liu J, Yu B, Orozco-Cabal L, Grigoriadis DE, Rivier J, Vale WW, Shinnick-Gallagher P, Gallagher JP. Chronic cocaine administration switches corticotropin-releasing factor2 receptor-mediated depression to facilitation of glutamatergic transmission in the lateral septum. J Neurosci. 2005;25:577–583. [PubMed]
  64. Liu X, Weiss F. Efectul aditiv al stresului și al drogurilor asupra reintegrării etanolului: exacerbarea istoricului dependenței și rolul activării concomitente a factorului de eliberare a corticotropinei și a mecanismelor opioide. J Neurosci. 2002; 22: 7856-7861. [PubMed]
  65. Lowman C, Allen J, Stout RL. Replication and extension of Marlatt’s taxonomy of relapse precipitants: overview of procedures and results. The Relapse Research Group Addiction. 1996;91(suppl):s51–s71. [PubMed]
  66. Lu L, Shepard JD, Hall FS, Shaham Y. Efectul factorilor de stres asupra mediului în ceea ce privește armarea opiaceei și psihostimulantului, reintegrarea și discriminarea la șobolani: o revizuire. Neurosci Biobehav Rev. 2003; 27: 457-491. [PubMed]
  67. Makino S, Gold PW, Schulkin J. Efectele corticosteronului asupra ARNm al hormonului de eliberare a corticotropinei în nucleul central al amigdelor și în regiunea parvocelulară a nucleului paraventricular al hipotalamusului. Brain Res. 1994; 640: 105-112. [PubMed]
  68. Marinelli PW, Funk D, Juzytsch W, Harding S, Rice KC, Shaham Y, Lê AD. The CRF1 receptor antagonist antalarmin attenuates yohimbine-induced increases in operant alcohol self-administration and reinstatement of alcohol seeking in rats. Psychopharmacology. 2007;195:345–355. [PubMed]
  69. Marlatt G, Gordon J. Determinants of relapse: implications for the maintenance of behavioral change. In: Davidson P, Davidson S, editors. Behavioral Medicine: Changing Health Lifestyles. Brunner/Mazel; New York: 1980. pp. 410–452.
  70. Menzaghi F, Howard RL, Heinrichs SC, Vale W, Rivier J, Koob GF. Characterization of a novel and potent corticotropin-releasing factor antagonist in rats. J Pharmacol Exp Ther. 1994;269:564–572. [PubMed]
  71. Merlo-Pich E, Lorang M, Yeganeh M, Rodriguez de Fonseca F, Raber J, Koob GF, Weiss F. Creșterea nivelurilor imunoreactivity ca factor de eliberare a corticotropinei extracelulare în amigdala șobolanilor treji în timpul stresului de reținere și retragerea etanolului măsurat prin microdializă. J Neurosci. 1995; 15: 5439-5447. [PubMed]
  72. Nestler EJ. Există o cale moleculară comună pentru dependență? Nat Neurosci. 2005; 8: 1445-1449. [PubMed]
  73. O’Dell LE, Roberts AJ, Smith RT, Koob GF. Enhanced alcohol self-administration after intermittent versus continuous alcohol vapor exposure, Alcohol. Clin Exp Res. 2004;28:1676–1682. [PubMed]
  74. Olive MF, Koenig HN, Nannini MA, Hodge CW. Nivelurile crescute de CRF extracelulare în nucleul patului stria terminalis în timpul retragerii și reducerii etanolului prin aportul de etanol ulterior. Pharmacol Biochem Behav. 2002; 72: 213-220. [PubMed]
  75. Overstreet DH, Knapp DJ, Breese GR. Modularea comportamentului de tip anxietate indus de retragerea etanolului prin CRF și CRF1 receptori. Pharmacol Biochem Behav. 2004; 77: 405-413. [Articol gratuit PMC] [PubMed]
  76. Papaleo F, Ghozland S, Ingallinesi M, Roberts AJ, Koob GF, Contarino A. Disruption of the CRF2 receptor pathway decreases the somatic expression of opiate withdrawal. Neuropsychopharmacology. 2008;33:2678–2887. [Articol gratuit PMC] [PubMed]
  77. Pastor R, McKinnon CS, Scibelli AC, Burkhart-Kasch S, Reed C, Ryabinin AE, Coste SC, Stenzel-Poore MP, Phillips TJ. Corticotropin-releasing factor-1 receptor involvement in behavioral neuroadaptation to ethanol: a urocortin1-independent mechanism. Proc Natl Acad Sci USA. 2008;105:9070–9075. [Articol gratuit PMC] [PubMed]
  78. Pelleymounter MA, Joppa M, Carmouche M, Cullen MJ, Brown B, Murphy B, Grigoriadis DE, Ling N, Foster AC. Role of corticotropin-releasing factor (CRF) receptors in the anorexic syndrome induced by CRF. J Pharmacol Exp Ther. 2000;293:799–806. [PubMed]
  79. Piazza PV, Deroche V, Deminiere JM, Maccari S, Le Moal M, Simon H. Corticosterone in the range of stress-induced levels possesses reinforcing properties: implications for sensation-seeking behaviors, Proc. Natl Acad Sci USA. 1993;90:11738–11742. [Articol gratuit PMC] [PubMed]
  80. Piazza PV, Le Moal M. Glucocorticoids as a biological substrate of reward: physiological and pathophysiological implications. Brain Res Rev. 1997;25:359–372. [PubMed]
  81. Rasmussen DD, Boldt BM, Bryant CA, Mitton DR, Larsen SA, Wilkinson CW. Etilenă zilnică cronică și retragere: 1. Schimbări pe termen lung în axa hipotalamo-hipofizo-suprarenale. Alcool Clin Exp Res. 2000; 24: 1836-1849. [PubMed]
  82. Rassnick S, Heinrichs SC, Britton KT, Koob GF. Microinjecția unui antagonist al factorului de eliberare a corticotropinei în nucleul central al amigdalei inversează efectele anxiogene similare ale retragerii de etanol. Brain Res. 1993; 605: 25-32. [PubMed]
  83. Reyes TM, Lewis K, Perrin MH, Kunitake KS, Vaughan J, Arias CA, Hogenesch JB, Gulyas J, Rivier J, Vale WW, Sawchenko PE. Urocortin II: A member of the corticotropin-releasing factor (CRF) neuropeptide family that is selectively bound by type 2 CRF receptors, Proc. Natl Acad Sci USA. 2001;98:2843–2848. [Articol gratuit PMC] [PubMed]
  84. Richardson HN, Zhao Y, Fekete EM, Funk CK, Wirsching P, Janda KD, Zorrilla EP, Koob GF. MPZP: a novel small molecule corticotropin- releasing factor type 1 receptor (CRF1) antagonist. Pharmacol Biochem Behav. 2008; 88: 497-510. [Articol gratuit PMC] [PubMed]
  85. Richter RM, Weiss F. Eliberarea CRF in vivo la amigdala de șobolan este crescută în timpul retragerii cocainei în șobolanii care administrează în mod automat. Synapse. 1999; 32: 254-261. [PubMed]
  86. Richter RM, Zorrilla EP, Basso AM, Koob GF, Weiss F. Altered amygdalar CRF release and increased anxiety-like behavior in Sardinian alcohol-preferring rats: a microdialysis and behavioral study, Alcohol. Clin Exp Res. 2000;24:1765–1772. [PubMed]
  87. Rimondini R, Arlinde C, Sommer W, Heilig M. Creșterea îndelungată a consumului voluntar de etanol și reglarea transcrierii în creierul șobolan după expunere intermitentă la alcool. FASEB J. 2002; 16: 27-35. [PubMed]
  88. Rodriguez de Fonseca F, Carrera MRA, Navarro M, Koob GF, Weiss F. Activarea factorului de eliberare a corticotropinei în sistemul limbic în timpul retragerii canabinoizilor. Ştiinţă. 1997; 276: 2050-2054. [PubMed]
  89. Ryabinin AE, Galvan-Rosas A, Bachtell RK, Risinger FO. High alcohol/sucrose consumption during dark circadian phase in C57BL/6J mice: involvement of hippocampus, lateral septum and urocortin-positive cells of the Edinger-Westphal nucleus. Psychopharmacology. 2003;165:296–305. [PubMed]
  90. Ryabinin AE, Weitemier AZ. The urocortin 1 neurocircuit: ethanol-sensitivity and potential involvement in alcohol consumption. Brain Res Rev. 2006;52:368–380. [PubMed]
  91. Ryabinin AE, Yoneyama N, Tanchuck MA, Mark GP, Finn DA. Urocortin 1 microinjection into the mouse lateral septum regulates the acquisition and expression of alcohol consumption. Neuroscience. 2008;151:780–790. [Articol gratuit PMC] [PubMed]
  92. Sabino V, Cottone P, Koob GF, Steardo L, Lee MJ, Rice KC, Zorrilla EP. Dissociation between opioid and CRF1 antagonist sensitive drinking in Sardinian alcohol-preferring rats. Psychopharmacology. 2006;189:175–186. [PubMed]
  93. Sarnyai Z, Biro E, Gardi J, Vecsernyes M, Julesz J, Telegdy G. Factorul de eliberare a corticotropinei creierului mediază comportamentul "anxietatelor" indus de retragerea cocainei la șobolani. Brain Res. 1995; 675: 89-97. [PubMed]
  94. Sarnyai Z, Shaham Y, Heinrichs SC. Rolul factorului de eliberare a corticotropinei în dependența de droguri. Pharmacol Rev. 2001; 53: 209-243. [PubMed]
  95. Schmid B, Blomeyer D, Treutlein J, Zimmermann US, Buchmann AF, Schmidt MH, Esser G, Rietschel M, Banaschewski T, Schumann G, Laucht M. Interacting effects of CRHR1 gene and stressful like events on drinking initiation and progression among 19-year-olds. Int J Neuropsychopharmacol 2009. 2009 in press. [PubMed]
  96. Schulkin J, McEwen BS, Gold PW. Allostasis, amigdala și anxietate anticipativă. Neurosci Biobehav Rev. 1994; 18: 385-396. [PubMed]
  97. Semba J, Wakuta M, Maeda J, Suhara T. Aducerea nicotinei induce subansensibilitatea axei hipotalamo-pituitar-suprarenale la stresul la șobolani: implicații pentru precipitarea depresiei în timpul renunțării la fumat. Psychoneuroendocrinology. 2004; 29: 215-226. [PubMed]
  98. Shaham Y, Erb S, Leung S, Buczek Y, Stewart J. CP-154,526, a selective, non-peptide antagonist of the corticotropin-releasing factor1 receptor attenuates stress-induced relapse to drug seeking in cocaine- and heroin-trained rats. Psychopharmacology. 1998;137:184–190. [PubMed]
  99. Shaham Y, Funk D, Erb S, Brown TJ, Walker CD, Stewart J. Factorul de eliberare a corticotropinei, dar nu și corticosteronul, este implicat în recidiva indusă de stres la căutarea de heroină la șobolani. J Neurosci. 1997; 17: 2605-2614. [PubMed]
  100. Shaham Y, Shalev U, Lu L, de Wit H, Stewart J. The reinstatement model of drug relapse: history, methodology and major findings. Psychopharmacology. 2003;168:3–20. [PubMed]
  101. Sharp BM, Matta SG. Detectarea prin microdializă in vivo a secreției de norepinefrină indusă de nicotină din nucleul paraventricular hipotalamic al șobolanilor în mișcare liberă: dependența de doză și desensibilizarea. Endocrinologie. 1993; 133: 11-19. [PubMed]
  102. Sharpe AL, Coste SC, Burkhart-Kasch S, Li N, Stenzel-Poore MP, Phillips TJ. Mice deficient in corticotropin-releasing factor receptor type 2 exhibit normal ethanol-associated behaviors. Alcohol Clin Exp Res. 2005;29:1601–1609. [erratum: 32, 2028] [PubMed]
  103. Sharpe AL, Phillips TJ. Central urocortin 3 administration decreases limited-access ethanol intake in nondependent mice. Behav Pharmacol. 2009 in press. [Articol gratuit PMC] [PubMed]
  104. Shepard JD, Barron KW, Myers DA. Furnizarea de corticosteron la amigdală mărește mARN-ul factorului de eliberare a corticotropinei în nucleul central al amigdaloidului și comportamentul asemănător cu anxietatea. Brain Res. 2000; 861: 288-295. [PubMed]
  105. Sinha R, Fuse T, Aubin LR, O’Malley SS. Psychological stress, drug-related cues and cocaine craving. Psychopharmacology. 2000;152:140–148. [PubMed]
  106. Skelton KH, Gutman DA, Thrivikraman KV, Nemeroff CB, Owens MJ. The CRF1 receptor antagonist R121919 attenuates the neuroendocrine and behavioral effects of precipitated lorazepam withdrawal. Psychopharmacology. 2007;192:385–396. [PubMed]
  107. Smith SM, Vale WW. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialog Clin Neurosci. 2006;8:383–395. [Articol gratuit PMC] [PubMed]
  108. Sommer WH, Rimondini R, Hansson AC, Hipskind PA, Gehlert DR, Barr CS, Heilig MA. Uregularea consumului voluntar de alcool, sensibilitatea comportamentală la stres și amigdala crhr1 expression following a history of dependence. Biol Psychiatry. 2008;63:139–145. [PubMed]
  109. Spangler E, Cote DM, Anacker AM, Mark GP, Ryabinin AE. Differential sensitivity of the perioculomotor urocortin-containing neurons to ethanol, psychostimulants and stress in mice and rats. Neuroscience. 2009;160:115–125. [Articol gratuit PMC] [PubMed]
  110. Specio SE, Wee S, O'Dell LE, Boutrel B, Zorrilla EP, Koob GF. CRF1 antagoniștii receptorilor atenuează autoadministrarea cocainei escaladată la șobolani. Psychopharmacology. 2008; 196: 473-482. [Articol gratuit PMC] [PubMed]
  111. Spina M, Merlo-Pich E, Chan RKW, Basso AM, Rivier J, Vale W, Koob GF. Appetite-suppressing effects of urocortin, a CRF-related neuropeptide. Science. 1996;273:1561–1564. [PubMed]
  112. Spina MG, Basso AM, Zorrilla EP, Heyser CJ, Rivier J, Vale W, Merlo-Pich E, Koob GF. Behavioral effects of central administration of the novel CRF antagonist astressin in rats. Neuropsychopharmacology. 2000;22:230–239. [PubMed]
  113. Sterling P, Eyer J. Allostasis: o nouă paradigmă pentru a explica patologia excitației. În: Fisher S, Reason J, editori. Manual de stres al vieții, cunoaștere și sănătate. John Wiley; Chichester: 1988. pp. 629-649.
  114. Stinus L, Cador M, Zorrilla EP, Koob GF. Buprenorfina și un antagonist CRF1 blochează dobândirea unei aversiuni condiționate de retragerea de opiacee la șobolani. Neuropsychopharmacology. 2005; 30: 90-98. [PubMed]
  115. Swanson LW, Sawchenko PE, Rivier J, Vale W. Organizarea celulelor imunoreactive cu factori de eliberare a corticotropinei ovine în creierul de șobolan: un studiu imunohistochimic. Neuroendocrinologie. 1983; 36: 165-186. [PubMed]
  116. Swanson LW, Simmons DM. Diferențial hormon steroid și influențe neuronale asupra nivelurilor ARNm ale peptidelor în celulele CRH ale nucleului paraventricular: un studiu histochimic de hibridizare la șobolan. J. Comp. Neurol. 1989; 285: 413-435. [PubMed]
  117. Takahashi LK, Ho SP, Livanov V, Graciani N, Arneric SP. Antagonism of CRF2 receptors produces anxiolytic behavior in animal models of anxiety. Brain Res. 2001;902:135–142. [PubMed]
  118. Treutlein J, Kissling C, Frank J, Wiemann S, Dong L, Depner M, Saam C, Lascorz J, Soyka M, Preuss UW, Rujescu D, Skowronek MH, Rietschel M, Spanagel R, Heinz A, Laucht M, Mann K, Schumann G. Genetic association of the human corticotropin releasing hormone receptor 1 (CRHR1) with binge drinking and alcohol intake patterns in two independent samples. Mol Psychiatry. 2006;11:594–602. [PubMed]
  119. Tucci S, Cheeta S, Seth P, Dosar SE. Antagonist al factorului de eliberare a corticotropinei, CRF α-helical9-41, inversează anxietatea condiționată, dar nu necondiționată, indusă de nicotină. Psychopharmacology. 2003; 167: 251-256. [PubMed]
  120. Turek VF, Tsivkovskaia NO, Hyytia P, Harding S, Lê AD, Ryabinin AE. Urocortin 1 expression in five pairs of rat lines selectively bred for differences in alcohol drinking. Psychopharmacology. 2005;181:511–517. [PubMed]
  121. Valdez GR, Sabino V, Koob GF. Creșterea comportamentului de tip anxietate și administrarea de etanol pe șobolani dependenți: inversarea activării receptorului de corticotropină-2. Alcool Clin Exp Res. 2004; 28: 865-872. [PubMed]
  122. Valdez GR, Zorrilla EP, Roberts AJ, Koob GF. Antagonismul factorului de eliberare a corticotropinei atenuează răspunsul sporit la stresul observat în timpul abstinenței prelungite a etanolului. Alcool. 2003; 29: 55-60. [PubMed]
  123. Vale W, Spiess J, Rivier C, Rivier J. Characterization of a 41-residue ovine hypothalamic peptide that stimulates the secretion of corticotropin and beta-endorphin. Science. 1981;213:1394–1397. [PubMed]
  124. Wang B, Shaham Y, Zitzman D, Azari S, Wise RA, You ZB. Cocaine experience establishes control of midbrain glutamate and dopamine by corticotropin-releasing factor: a role in stress-induced relapse to drug seeking. J Neurosci. 2005;25:5389–5396. [PubMed]
  125. Wang B, You ZB, Rice KC, Wise RA. Stress-induced relapse to cocaine seeking: roles for the CRF2 receptor and CRF-binding protein in the ventral tegmental area of the rat. Psychopharmacology. 2007;193:283–294. [PubMed]
  126. Weiss F, Ciccocioppo R, Parsons LH, Katner S, Liu X, Zorrilla EP, Valdez GR, Ben-Shahar O, Angeletti S, Richter RR. Compulsive drug-seeking behavior and relapse: neuroadaptation, stress, and conditioning factors. In: Quinones-Jenab V, editor. The Biological Basis of Cocaine Addiction. Vol. 937. New York Academy of Sciences; New York: 2001. pp. 1–26. series title: Annals of the New York Academy of Sciences. [PubMed]
  127. Zorrilla EP, Koob GF. The roles of urocortins 1, 2 and 3 in the brain. In: Steckler T, Kalin NH, Reul JMHM, editors. Handbook of Stress and the Brain. Vol. 15. Elsevier Science; New York: 2005. pp. 179–203. series title: Techniques in the Behavioral and Neural Sciences.
  128. Zorrilla EP, Tache Y, Koob GF. Nibbling at CRF receptor control of feeding and gastrocolonic motility. Trends Pharmacol Sci. 2003;24:421–427. [PubMed]
  129. Zorrilla EP, Valdez GR, Weiss F. Changes in levels of regional CRF-like-immunoreactivity and plasma corticosterone during protracted drug withdrawal in dependent rats. Psychopharmacology. 2001;158:374–381. [PubMed]
  130. Zorrilla EP, Zhao Y, Koob GF. Anti-CRF. In: Fink H, editor. Encyclopedia of Stress. 2. Vol. 1. Elsevier; Amsterdam: 2007. pp. 206–214. A-E.
  131. Zywiak WH, Connors GJ, Maisto SA, Westerberg VS. Relapse research and the Reasons for Drinking Questionnaire: a factor analysis of Marlatt’s relapse taxonomy. Addiction. 1996;91(suppl):s121–s130. [PubMed]